Response of Germfree Mice to Colonization by Oxalobacter formigenes and Altered Schaedler Flora
نویسندگان
چکیده
Colonization with Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stone disease. To improve our limited understanding of host-O. formigenes and microbe-O. formigenes interactions, germfree mice and mice with altered Schaedler flora (ASF) were colonized with O. formigenes. Germfree mice were stably colonized with O. formigenes, which suggests that O. formigenes does not require other organisms to sustain its survival. Examination of intestinal material indicated no viable O. formigenes in the small intestine and 4 10 CFU O. formigenes per 100 mg contents in the cecum and proximal colon, with 0.02% of total cecal O. formigenes cells being tightly associated with the mucosa. O. formigenes did not alter the overall microbial composition of ASF, and ASF did not affect the capacity of O. formigenes to degrade dietary oxalate in the cecum. Twentyfour-hour collections of urine and feces in metabolic cages in semirigid isolators demonstrated that the introduction of ASF into germfree mice significantly reduced urinary oxalate excretion. These experiments also showed that O. formigenes-monocolonized mice excreted significantly more urinary calcium than did germfree mice, which may be due to degradation of calcium oxalate crystals by O. formigenes and subsequent intestinal absorption of free calcium. In conclusion, the successful establishment of mouse models with defined flora and O. formigenes should improve our understanding of O. formigenes-host and O. formigenes-microbe interactions. These data support the use of O. formigenes as a probiotic that has limited impact on the composition of the resident microbiota but provides an efficient oxalate-degrading function.
منابع مشابه
Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project
BACKGROUND Increasing evidence shows the importance of the commensal microbe Oxalobacter formigenes in regulating host oxalate homeostasis, with effects against calcium oxalate kidney stone formation, and other oxalate-associated pathological conditions. However, limited understanding of O. formigenes in humans poses difficulties for designing targeted experiments to assess its definitive effec...
متن کاملOxalobacter formigenes Colonization and Oxalate Dynamics in a Mouse Model.
Animal and human studies have provided compelling evidence that colonization of the intestine with Oxalobacter formigenes reduces urinary oxalate excretion and lowers the risk of forming calcium oxalate kidney stones. The mechanism providing protection appears to be related to the unique ability of O. formigenes to rely on oxalate as a major source of carbon and energy for growth. However, much...
متن کاملEnteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter.
Oxalobacter colonization of rat intestine was previously shown to promote enteric oxalate secretion and elimination, leading to significant reductions in urinary oxalate excretion (Hatch et al. Kidney Int 69: 691-698, 2006). The main goal of the present study, using a mouse model of primary hyperoxaluria type 1 (PH1), was to test the hypothesis that colonization of the mouse gut by Oxalobacter ...
متن کاملThe Relationship between Serum Oxalic Acid, Central Hemodynamic Parameters and Colonization by Oxalobacter formigenes in Hemodialysis Patients.
BACKGROUND/OBJECTIVE Elevated pulse wave velocity (PWV) and central aortic blood pressures are independent predictors of increased cardiovascular morbidity and mortality in hemodialysis (HD) patients. Oxalic acid is a uremic retention molecule that is extensively studied in the pathogenesis of calcium oxalate stones. Oxalobacter formigenes, a member of the colon microbiota, has important roles ...
متن کاملGenome Sequence of Oxalobacter formigenes Strain HC-1
The lack of Oxalobacter formigenes colonization of the human gut has been correlated with the formation of calcium oxalate kidney stones and also with the number of recurrent kidney stone episodes. Here, we present the genome sequence of HC-1, a human strain isolated from an individual residing in Iowa, USA.
متن کامل